Under review as a conference paper at ICLR 2025

A DYNAMIC LOW-RANK FAST GAUSSIAN TRANS-
FORM

Anonymous authors
Paper under double-blind review

ABSTRACT

The Fast Gaussian Transform (FGT) enables subquadratic-time multiplication of
an n xn Gaussian kernel matrix K; ; = exp(—||z; —;||3) with an arbitrary vector
h € R", where z1, ..., x, € R? are a set of fixed source points. This kernel plays
a central role in machine learning and random feature maps. Nevertheless, in
most modern data analysis applications, datasets are dynamically changing (yet
often have low rank), and recomputing the FGT from scratch in (kernel-based)
algorithms incurs a major computational overhead (= n time for a single source
update € R?). These applications motivate a dynamic FGT algorithm, which
maintains a dynamic set of sources under kernel-density estimation (KDE) queries
in sublinear time while retaining Mat-Vec multiplication accuracy and speed.

Assuming the dynamic data-points x; lie in a (possibly changing) k-dimensional
subspace (k < d), our main result is an efficient dynamic FGT algorithm, sup-
porting the following operations in log®®) (n/¢) time: (1) Adding or deleting a
source point, and (2) Estimating the “kernel-density” of a query point with re-
spect to sources with ¢ additive accuracy. The core of the algorithm is a dynamic
data structure for maintaining the projected “interaction rank” between source and
target boxes, decoupled into finite truncation of Taylor and Hermite expansions.

1 INTRODUCTION

The fast Multipole method (FMM) was described as one of the top 10 most important algorithms of
the 20th century (Dongarra & Sullivan, 2000). It is a numerical technique that was originally de-
veloped to speed up calculations of long-range forces for the n-body problem in theoretical physics.
FMM was first introduced in 1987 by Greengard and Rokhlin Greengard & Rokhlin (1987), based
on the multipole expansion of the vector Helmholtz equation. By treating the interactions between
far-away basis functions using the FMM, the underlying matrix entries M;; € R™*™ (encoding the
pairwise “interaction” between x;, x; € R?) need not be explicitly computed nor stored for matrix-
vector operations — This technique allows to improve the naive O(n?) matrix-vector multiplication

time to quasi-linear time ~ n - log®(?) (n), with negligible (polynomial-small) additive error.

Since the discovery of FMM in the late 80s, it had a profound impact on scientific computing and has
been extended and applied in many different fields, including physics, mathematics, numerical anal-
ysis and computer science (Greengard & Rokhlin, 1987; Greengard, 1988; Greengard & Rokhlin,
1988; 1989; Greengard, 1990; Greengard & Strain, 1991; Engheta et al., 1992; Greengard, 1994;
Greengard & Rokhlin, 1996; Beatson & Greengard, 1997; Darve, 2000; Yang et al., 2003; 2004;
Martinsson, 2012; Chandrasekaran et al., 2006). To mention just one important example, we note
that FMM plays a key role in efficiently maintaining the SVD of a matrix under low-rank perturba-
tions, based on the Cauchy structure of the perturbed eigenvectors (Gu & Eisenstat, 1994). In the
context of machine learning, the FMM technique can be extended to the evaluation of matrix-vector
products with certain Kernel matrices K; ; = f (||z; — «;]|), most notably, the Gaussian Kernel
Ki; = exp(—|lz; — x;||3) (Greengard & Strain, 1991). For any query vector ¢ € R", the fast
Gaussian transform (FGT) algorithm outputs an arbitrarily-small pointwise additive approximation
to K - ¢, ie., a vector z € R™ such that |[K - ¢ — z||lsc < ¢, in merely nlog®? (||g||1/¢) time,
which is dramatically faster than naive matrix-vector multiplication (rn?) for constant dimension d.
Note that the (poly)logarithmic dependence on 1/e means that FGT can achieve polynomially-small

Under review as a conference paper at ICLR 2025

additive error in quasi-linear time, which is as good as exact computation for all practical purposes.
The crux of FGT is that the n X n matrix K can be stored implicitly, using a clever spectral-analytic
decomposition of the geometrically-decaying pairwise distances (“interaction rank”, more on this
below).

Kernel matrices play a central role in machine learning (Shawe-Taylor & Cristianini, 2004; Rahimi
& Recht, 2008), as they allow to extend convex optimization and learning algorithms to nonlinear
feature spaces and even to non-convex problems (Li & Liang, 2018; Jacot et al., 2018; Du et al.,
2019; Allen-Zhu et al., 2019a;b; Lee et al., 2020). Accordingly, matrix-vector multiplication with
kernel matrices is a basic operation in many ML optimization tasks, such as Kernel PCA and ridge
regression (Alaoui & Mahoney, 2015; Avron et al., 2017a;b; Lee et al., 2020), Gaussian-process re-
gression (GPR) (Rasmussen & Nickisch, 2010), Kernel linear system solvers (via Conjugate Gradi-
ent (Alman et al., 2020)), and in fast implementation of the dynamic “state-space model” (SSM) for
sequence-correlation modeling (which crucially relies on the Multipole method (Gu et al., 2021)), to
mention a few. The related data-structure problem of kernel density estimation of a point (Charikar
& Siminelakis, 2017; Backurs et al., 2018; Charikar & Siminelakis, 2019; Charikar et al., 2020;
Zandieh et al., 2023; Alman & Song, 2023)

1 n
i=1

has various applications in data analysis and statistics (Fan & Gijbels, 1996; Scholkopf & Smola,
2002; Schubert et al., 2014), and is the main subroutine in the implementation of transfer learning
using kernels (see Charikar & Siminelakis (2017); Charikar et al. (2020) and references therein, and
the Related Work Section 2 below). As such, speeding up matrix-vector multiplication with kernel
matrices, such as FGT, is an important question in theory and practice.

One drawback of FMM and FGT techniques, however, is that they are static algorithms, i.e., they
assume a fixed set of n data points x; € R?. By contrast, most aforementioned ML and data anal-
ysis applications are dynamic by nature and need to process rapidly-evolving datasets to maintain
prediction and model accuracy. One example is the renewed interest in online regression (Cohen
et al., 2015; Jiang et al., 2022), motivated by continual learning theory (Parisi et al., 2019). Indeed,
it is becoming increasingly clear that many static optimization algorithms do not capture the require-
ments of real-world applications (Jain et al., 2008; Chen et al., 2020b;a; Song et al., 2021a;b; Xu
et al., 2021; Shrivastava et al., 2021). Notice that changing a single source-point x; € R? generally
affects an entire row (n distances ||z; — z;||) of the matrix K. As such, naively re-computing the
static FGT on the modified set of distances, incurs a prohibitive computational overhead (n > d).
This raises the natural question of whether it is possible to achieve sublinear-time insertion and
deletion of source points, as well as “local” kernel-density estimation (KDE) queries (Charikar &
Siminelakis, 2017; Yang et al., 2003), while maintaining speed and accuracy of matrix-vector mul-
tiplication queries:

Is it possible to ‘dynamize’ the Fast Gaussian Transform, in sublinear time? Can the exponential
dependence on d (Greengard & Strain, 1991) be mitigated if the data-points x; lie in a
k-dimensional subspace of R ?

The last question is motivated by the recent work of Cherapanamjeri & Nelson (2022), who observed
that kernel-based methods and algorithms typically involve low-rank datasets, (where the “intrinsic”
dimension is w < d), in which case one could hope to circumvent the exponential dependence on d
in the aforementioned (static) FMM algorithm (Greengard & Strain, 1991; Alman et al., 2020).

1.1 MAIN RESULT

Our main result is an affirmative answer to the above question. We design a fully-dynamic FGT
data structure, supporting polylogarithmic-time updates and “density estimation” queries, while re-
taining quasi-linear time for arbitrary Mat-Vec queries (Kq). More formally, for a set of IV “source”
points s1,..., sy, the j-th coordinate (Kq),cny is G(s;) = Ei\;l qi - e~l1s5=5113/3 \which mea-
sures the kernel-density at s; (“interaction” of s; with the rest of the sources). More generally, for
any “target” point ¢t € RY, let G(t) := Zfil qi - e~ 1t=5:l2/3 denote the kernel density of t with

Under review as a conference paper at ICLR 2025

respect to the sources, where each source s; is equipped with a charge g;. Our data structure sup-
ports fully-dynamic source updates and density-estimation queries in sublinear time. Observe that
this immediately implies that entire Mat-Vec queries (K - ¢) can be computed in quasi-linear time
N1+o(1) | The following is our main result:

Theorem 1.1 (Dynamic Low-Rank FGT, Informal version of Theorem F.2). Let B denote a w-
dimensional subspace C RY. Given a set of source points s, and charges q, there is a (deterministic)
data structure that maintains a fully-dynamic set of N source vectors s1,--- ,sN € B under the
following operations:

* INSERT/DELETE(s; € R? ¢; € R) Insert or Delete a source point s; € R? along with its

“charge” ¢; € R, in1og®) (||q||1/¢) time. The intrinsic subspace B could change as the
source points are updated.

* DENSITY-ESTIMATION(t € B) For any point t € B C R%, output the kernel density
of t with respect to the sources, i.e., output G such that G(t) — ¢ < G < G(t) + ¢ in
10g%“(|lql|1 /<) time.

We note that when w = d, the costs of our dynamic algorithm match the statistic FGT algorithm. As
one might expect, our data structure applies to a more general subclass of ‘geometrically-decaying’
kernels K; ; = f(||z; — z;])) (f(tz) < (1 — a)' f(z)), see Theorem B.5 for the formal statement of
our main result. It is also noteworthy that our data structure is deterministic, and therefore handles
even adaptive update sequences (Hardt & Woodruff, 2013; Ben-Eliezer et al., 2020; Cherapanamjeri
& Nelson, 2020). This feature is important in adaptive data analysis and in the use of dynamic
data structures for accelerating path-following iterative optimization algorithms (Brand et al., 2020),
where proximity to the original gradient flow (linear) equations is crucial for convergence, hence the
data structure needs to ensure the approximation guarantees hold against any outcome of previous
iterations.

Remark on Dynamization of “Decomposable” Problems A data structure problem P (D, q)
is called decomposable, if a query q to the union of two separate datasets can be recovered
from the two marginal answers of the query on each of them separately, i.e., P(D; U Do, q) =
g (P(D1,q),P(D3,q)) for some function g. A classic technique in data structures Bentley &
Saxe (1980) asserts that decomposable data structure problems can be (partially) dynamized in a
black-box fashion — It is possible to convert any static DS for P into a dynamic one supporting
incremental updates, with an amortized update time ¢,, ~ (T'/N) - log(NN), where T is the prepro-
cessing time of building the static data structure, and N is the input size. We can see that Matrix-
Vector multiplication over a field with row-updates to the matrix is a decomposable problem since
(A+ B)g = Aq + Bg, and so one might hope that the dynamization of static FMM/FGT methods
is an immediate consequence of decomposability. This reasoning is, unfortunately, incorrect, since
changing even a single input point z; € R, perturbs n distances, i.e., an entire row in the kernel
matrix K, and so the aforementioned reduction is prohibitively expensive (yields update time at least
n > d for adding/removing a point).

Notation. For a vector z, we use ||z||2 to denote its £3-norm, ||z||1, ||x]lo and ||z||e for its ¢1-
norm, /g-norm and /..-norm. We use O(f) to denote f - poly(log f). For a vector z € R? and a
real number p, we say x < pif x; < pforall i € [d]. We say = > p if there exists an ¢ € [d] such
that z-; > p. For a positive integer n, we use [n] to denote a set {1,2,--- ,n}.

Roadmap. In Section 2, we introduce the related research works. In Section 3, we present the
important techniques used to prove our main result. In Section 4, we make a conclusion for our
work.

2 RELATED WORK

Structured Linear Algebra Multiplying an n X n matrix M by an arbitrary vector ¢ € R"
generally requires ©(n?) time, and this is information-theoretically optimal since merely reading

Under review as a conference paper at ICLR 2025

the entries of the matrix requires ~ n? operations. Nevertheless, if M has some structure (O(n)-
bit description-size), one could hope for quasi-linear time for computing M - q. Kernel matrices
Ki; = f(llzs — x;||), which are the subject of this paper, are special cases of such geometric-
analytic structure, as their n? entries are determined by only ~ n points in R?, i.e., O(nd) bits of
information. There is a rich and active body of work in structured linear algebra, exploring various
“algebraic” structures that allow quasi-linear time matrix-vector multiplication, most of which relies
on (novel) extensions of the Fast Fourier Transform (see Driscoll et al. (1997); Sa et al. (2018); Chen
et al. (2021) and references therein). A key difference between FMMs and the aforementioned FFT-
style line of work is that the latter develops exact Mat-Vec algorithms, whereas FMM techniques
must inevitably resort to (small) approximation, based on the analytic smoothness properties of the
underlying function and metric space (Alman et al., 2020; 2021). This distinction makes the two
lines of work mostly incomparable.

Comparison to LSH-based KDEs A recent line of work due to Charikar & Siminelakis (2017);
Backurs et al. (2018); Charikar & Siminelakis (2019); Charikar et al. (2020); Bakshi et al. (2023)
develops fast KDE data structures based on locality-sensitive hashing (LSH), which seems possible
to be dynamized naturally (as LSH is dynamic by nature). However, this line of work is incompara-
ble to FGT, as it solves KDE in the low-accuracy regime, i.e., the runtime dependence on ¢ of these
works is poly(1/¢) (but polynomial in d), as opposed to FGT (poly log(1/¢) but exponential in d).
Additionally, some work (e.g., Charikar et al. (2020)) also needs an upper bound of the ground-truth

value u, = K- g, and the efficiency of their data structure depends on i, O(l), while FGT does not
need any prior knowledge of .

Kernel Methods in ML. Kernel methods can be thought of as instance-based learners: rather than
learning some fixed set of parameters corresponding to the features of their inputs, they instead
“remember” the i-th training example (z;, y;) and learn for it a corresponding weight w;. Prediction
for unlabeled inputs, i.e., those not in the training set, is treated using an application of a similarity
function K (i.e., a kernel) between the unlabeled input x’ and each of the training-set inputs x;.
This framework is one of the main motivations for the development of kernel methods in ML and
high-dimensional statistics (Scholkopf et al., 2002). There are two main themes of research on
kernel methods in the context of machine learning: The first one is focused on understanding the
expressive power and generalization of learning with kernel feature maps (Ng et al., 2002; Scholkopf
et al., 2002; Shawe-Taylor & Cristianini, 2004; Rahimi & Recht, 2008; Hofmann et al., 2008; Jacot
et al., 2018; Du et al., 2019; Yang et al., 2023); The second line is focused on the computational
aspects of kernel-based algorithms (Alman et al., 2020; Brand et al., 2021; Song et al., 2021a;b; Hu
et al., 2022; Alman et al., 2022; Zhang, 2022; Alman & Song, 2023; Deng et al., 2023; Gao et al.,
2023b;a). We refer the reader to these references for a much more thorough overview of these lines
of research and the role of kernels in ML.

3 TECHNICAL OVERVIEW

In Section 3.1, we review the offline FGT algorithm (Greengard & Rokhlin, 1987; Alman et al.,
2020) and analyze the computational costs. In Section 3.2, we illustrate the technique of estimating
G (t) for an arbitrary target vector ¢ € RZ. In Section 3.3, we explain that the data structures support
the dynamic setting where the source vectors are allowed to come and leave. In Section 3.4, we
describe how to extend the data structure to a more general kernel function. In Section 3.5, we show
that if the source and target vectors come from a low dimensional subspace, the data structure can
bypass the curse of dimension. In Section 3.6, we modify the data structure to support the scenario
where the rank of data points varies across iterations.

3.1 OFFLINE FGT ALGORITHM

We first review Alman et al. (2020)’s offline FGT algorithm. Consider the following easier problem:
given IV source vectors Si,...,Sy € R%, and M target vectors t1,...,ty € R9, estimate

N
G(tl) = Zq] . e_”tm_sj‘lg/é
j=1

Under review as a conference paper at ICLR 2025

compute G(t) - | target

compute C3(B,C)

f/ compute A, (B)

source

Figure 1: An illustration of the source-target boxing our data structure maintains in high dimensional
space, using the “hybrid” of Taylor-Hermite expansions.

for any i € [M], in quasi-linear time. Following Greengard & Strain (1991); Alman et al. (2020),
our algorithm subdivides By = [0, 1] into smaller boxes with sides of length L = /26 parallel to
the axes, for a fixed r < 1/2, and then assign each source s; to the box B in which it lies and each
target ¢; to the box C in which it lies. Note that there are (1/L)¢ boxes in total. Let N(B) and N(C)
denote the number of non-empty source and target boxes, respectively. For each target box C, we

need to evaluate the total field due to sources in all boxes. Since each box B has side length 7v/20,
only a fixed number of source boxes BB can contribute more than ||¢||1€ to the field in a given target
box C, where ¢ is the precision parameter. Hence, for a target vector in box C, if we only count the
contributions of the source vectors in its (2k + 1) nearest boxes where k is a parameter, it will incur
an error that can be upper bounded as follows:

—t—s.:lI2? 0,212
o gl RS < gl e M
Gillt—55lc0 >krv/28

When we take k& = log(||¢||1 /), this error becomes o(¢). For a single source vector s; € B, its field
G, (t) =q; - e~ I1t=53lI*/3 has the following Taylor expansion at t¢ (the center of C):

_ B
st(t) = ZB,@(j’C) (t\/gtc>) (2)

520

where 3 € N¢ is a multi-index,

_1)lI8lh 5
Bﬂ(jaC)ZQj'(lﬁ)!'Hﬁ(J\/gtc>,

and Hg(x) is the multi-dimensional Hermite function indexed by (3 (see Definition A.7). We can
also control the truncation error of the first p? terms by ¢ for p = log(||q||1/¢) (see Lemma E.6).
Then, for a fixed source box B, the field can be approximated by

> Ch(B.O(ZE),

B<p

where C(B,C) 1= >_ 5 Bs(j,C). Hence, for each query point ¢, we just need to locate its target
box C, and then G(t) can be approximated by:

Gt = 3 3 CuB.C) (t;gc)ﬂ -3 ane) (t;gc)ﬂ

Benb(C) B<p

Under review as a conference paper at ICLR 2025

where nb(C) is the set of (2k + 1)d nearest-neighbor of C and

= Y C(B.0).

Benb(C)

Notice that we can further pre-compute C;g(C) for each target box C and 3 < p. Then, the running
time for each target point becomes O(p?). For the preprocessing time, notice that each Cj5(13,C)
takes O(Np)-time to compute, where N is the number of source points in 3. Fix a 8 < p. Consider
the computational cost of Cg(C) for all target boxes C. Note that each source box can interact with

at most (2k + 1)¢ target boxes. Therefore, the total running time for computing {C5(Cs)} (e[N(C)]
is bounded by O (N - (2k 4 1)? + M. Then, the total cost of the preprocessing is

O(N-(2k+1)% p+M-p?).

By taking p = log(||g|l1/¢) and k& < log(]|¢||1/€), we get an algorithm with O4(N + M)-time
for preprocessing and O,4(1)-time for each target point. We note that this algorithm also supports
fast computing Kg for any ¢ € R? and K € R™ " with K; ; = e llsi=s;l13/8 Roughly speaking,
for each query vector ¢, we can build this data structure, and then the i-th coordinate of Kgq is just
G(s;), which can be computed in poly-logarithmic time. Hence, Kq can be approximately computed
in nearly-linear time with /., error at most €.

Remark 3.1. The kernel bandwidth § > 0 can be set using standard rules like median heuristic
or cross-validation. For the box length L = r/26, the parameter r controls the tradeoff between
computational cost and accuracy. We recommend r = 1/2 as it provides a good balance, and the
error bound (see Eq. (1)) scales as exp(—2r2k?) where k is a parameter that controls the number of
neighboring boxes. For the truncation parameter p, we set it to p = log(||q||1/¢) to achieve desired
accuracy € (see Lemma E.6). This parameter can be adjusted dynamically based on observed errors.

3.2 ONLINE STATIC KDE DATA STRUCTURE (QUERY-ONLY)

Next, we consider the same static setting, except target queries t € R¢ arrive online, and the goal
is to estimate G(t) for an arbitrary vector in sublinear time. To this end, note that if ¢ is con-
tained in a non-empty target box C,, then G(t) can be approximated using pre-computed C;(Cy)
in poly-logarithmic time. Otherwise, we need to add a new target box C(¢y1 for ¢ and compute

Cs(Cn(c)+1)> which takes time
> O(Ng).

Benb(Cn(cy+1)

However, this linear scan naively takes O(NN) time in the worst case. Indeed, looking into the

coefficients Cg(B,C):
HﬁHl s; — te
ZqJ 'Hﬂ< j\/g)

jEB

reveals that the source vectors s; are “entangled” with ¢, so evaluating Cg(53,C) brute-forcely for
a new target box C, incurs a linear scan of all source vectors in B. To “disentangle” s; and t¢, we
use the Taylor series of Hermite function (Eq. (5)):

e (M) =t (M) = S (M) e (B,

where s denotes the center of the source box B. Hence, C3(53,C) can be re-written as:

>z PRt (17 s (555
O e (275

a>0

Under review as a conference paper at ICLR 2025

where g(z) = (—1)lI*ll /2! and

[
)= 49(e) (SJ SB) . 3)
jeB Ve

Now, A, (B) does not rely on the target box and can be pre-computed, hence we can compute
C3(B,C) without going over each source vector. However, there is a price for this conversion,
namely, that now Cg(B,C) involves summing over all @ > 0, so we need to somehow truncate
this series while controlling the overall truncation error for G(¢), which appears difficult to achieve.
To this end, we observe that this two-step approximation is equivalent to first forming a truncated
Hermite series of e/lt=112/9 at the center of the source box s B, and then transforming all Hermite
expansions into Taylor expansions at the center of a farget box tc. More formally, the Hermite

approximation of G(t) is
=S Y (-pleha,B)H, (t - SB) + Enr
) \/S H(p)a

B a<p

where |Erry (p)| < € (see Lemma E.2). Hence, we can Taylor-expand each H, at t¢ and get that:

B
= cs(C (7) + Errr(p) + Erry (p),
B<p
where

|[Erry (p)| + [Errr(p)| < e,

(for the formal argument, see Lemma E.5).
Remark 3.2. The original FGT paper contains a flaw in the error estimation, which was partially
fixed in Baxter & Roussos (2002) for the Hermite expansion. Later, Lee et al. (2005) corrected
the error in both Hermite and Taylor expansions. However, their proofs are brief and use different
notations that are adapted for their dual-tree algorithm. We provide more detailed and user-friendly
proofs for the correct error estimations in Section E. We believe that they are of independent interest
to the community.

This means that, at preprocessing time, it suffices to compute A, (B) for all source boxes and all
a < p, which takes

> 0@ Ns)= 0@ N)= OaN).
kE[N(B))
time. Then, at query time, given an arbitrary query vector ¢ in a target box C, we compute

eSS E)

BEnb(C) a<p

which takes

O (d-p*- (2k +1)") = poly log(n)

time, so long as d = O(1) and ¢ = n=),

3.3 DYNAMIZATION

Given our (static) representation of points from the last paragraph, dynamizing the above static KDE
data structure now becomes simple. Suppose we add a source vector s in the source box B. We first
update the intermediate variables A, (B),a < p, which takes O(p?) time. So long as the ¢;-norm
of the updated charge-vector q remains polynomial in the norm of the previously maintained vector,
namely

log(flg"*[l1) > log(llqll1),

we show that one source box can only affect (2k + 1)? nearest target box C; otherwise, when the
change is super-polynomial, we rebuild the data structure, but this cost is amortized away. Hence,
we only need to update Cg(C) for those C € nb(B3). Notice that each C3(13,C) can be updated in
O4(1) time, so each affected C;3(C) can also be updated in O4(1) time. Hence, adding a source

vector can be done in time O((2k + 1)4p?) = O4(1) as before. Deleting a source vector follows
from a similar procedure.

Under review as a conference paper at ICLR 2025

3.4 GENERALIZATION TO FAST-DECAYING KERNELS

We briefly explain how the dynamic FGT data structure generalizes to more general kernel functions
K(s,t) = f(||s — t||2) where f satisfies the 3 properties in Definition 3.3 below.

Definition 3.3 (Properties of general kernel function, Alman et al. (2020)). We define the following
properties of the function f : R — R,.:

* P1: [is non-increasing, i.e., f(x) < f(y) when x > y.
o P2: [isdecreasing fast, i.e., f(O(log(1l/e))) <e.

e P3: f’s Hermite expansion and Taylor expansion are truncateable: the truncation error of
the first (log®(1/¢)) terms in the Hermite and Taylor expansion of K is at most e.

Remark 3.4. There are many widely-used kernels that satisfy the properties of general kernel func-
tion (Definition 3.3) such as:

o inverse polynomial kernels: K (x,y) = 1/||x — y||§ for constant ¢ > 0,
o exponential kernel: K(x,y) = exp(—|z — y||2).

o inverse multiquadric kernel: K (z,y) = 1/+/||z — y||3 + ¢ (Micchelli, 1984; Martinsson,
2012), and

e rational quadratic kernel: K(x,y) = 1/(1+ ||z — y||3/a) for a > 0.

The key insight is that these kernels’ fast decay allows truncation of distant interactions, while their
smoothness enables efficient local approximations via series expansions. This broader applicability
significantly extends the practical utility of our dynamic data structure.

In the general case,
Gr(t) =) qK(s;,).
B jeB
Similar to the Gaussian kernel case, we can first show that only near boxes matter:

ST gl fls—tl2) < e

Jillt—s;llec >kr

by the fast-decreasing property (P2) in Definition 3.3 of f and taking k = O(log(||g||1/¢))". Then,
we can follow the same “decoupling” approach as the Gaussian kernel case to first Hermite expand
G (t) at the center of each source box and then Taylor expands each Hermite function at the center
of the target box. In this way, we can show that

N
Gt~ Y Crate) ()

B<p

where

Cr,p(C) =cg Z ZAf,a(B)HaJrﬁ (SB\%tC>)

Benb(C) a<p

and the approximation error can be bounded since f is truncateable. A ,(B) depends on the kernel
function f and can be pre-computed in the preprocessing. Then, each C' (C) can be computed in
poly-logarithmic time. Hence, G(t) can be approximately computed in poly-logarithmic time for
any target vector ¢.

'Indeed, by property P2, f(©(log(1/€"))) < €. Taking &’ := ¢/||q||1, we get that £(||s —t||2) < &/]|q]|1.
Hence, the summation is at most €.

Under review as a conference paper at ICLR 2025

compute G(t) //)" target compute G(t) - ?/)" target

compute Cg(B,C) ———— compute C3(B,C)

inserted points

} 7/ compute A, (B) } 7/ compute A, (B)

V2§ V2§

source source

Figure 2: An illustration of inserting two source points with corresponding interactions to the data
structure.

3.5 HANDLING POINTS FROM LOW-DIMENSIONAL STATIC SPACES

In many practical problems, the data lies in a low dimensional subspace of R?. We can first project
the data into this subspace and then perform FGT on R", where w is the rank. The following lemma
shows that FGT can be performed on the projections of the data.

Lemma 3.5 (Hermite projection lemma in low-dimensional space, informal version of Lemma F.3).
Given B € R¥™Y that defines a w-dimensional subspace of R, let BTB = UAUT € RwXw
denote the spectral decomposition where U € RY*Y and a diagonal matrix A € RYV*". We define
P := AY2U BT € R¥*4 Then we have for any t,s € R® from subspace B, the following
equation holds

elt=sl3/s = $° (\/Wpa(!t— D (ISP (E - 5))

a>0

By Lemma 3.5, it suffices to divide R instead of R? into boxes and conduct Hermite expansion
and Taylor expansion on the low-dimensional subspace. More specifically, given the initial source
points, we can compute P by SVD or QR decomposition in IV -w“~!-time?, which is of smaller order
than the FGT’s preprocessing time®. Then, we can project each point s; € R to z; := Ps; € RY
for i € [N]. The remaining procedure in preprocessing is the same as before, but directly working
on the low-dimensional sources {z1, ...,y }. In the query phase, consider a target point ¢ in the
subspace. We are supposed to compute

t) ~ Z Z g; - e It=sallz/o,
B jeB
By Lemma 3.5, we know that

- S0 (7)o ()

B<p

where C is the target box that contains ¢, y = Pt and y¢ = Ptc projected points. Moreover, for each
£ < p and target box C, we have

)8 o
€)= U S Au@ts (HE1D)

B a<p

g ()

B a<p

1)1l

2w ~ 2.372 is the fast matrix multiplication time exponent.

3In practice, we can run numerical algorithms such as randomized SVD that are very fast for low-rank
matrices.

Under review as a conference paper at ICLR 2025

Similarly, for each < p and source box 1,

ane) = EUE S ()

a0 U
Therefore, each query is equivalent to being conducted in a w-dimensional space using our data
structure, which takes log”) (||g||1 /¢)-time. The update can be done in a similar way in the low-
dimensional space using the procedure described in Section 3.3. Hence, each update (insertion or

deletion) takes log®™)(||q||1/¢).

3.6 HANDLING POINTS FROM LOW-DIMENSIONAL DYNAMIC SPACES

We note that when we add a new source point to the data structure, the intrinsic rank of the data
might change by 1 when the point is not in the subspace. For an inserting source point s, consider

the rank-increasing case, i.e., (I —P)s # 0. Then, this new source point contributes to one new basis
(I=P)s

= TU=P)s]2- o :)))

the subspace is changed, we need to maintain the intermediate variables A, (B), C3(C). Itis easy to

observe that for the original projected source and target points or boxes, they can easily be “lifted”
to the new subspace by setting zero to the (w + 1)-th coordinate. We show how to update A, (B)
efficiently. For each source box B and o < p, we have

3 (71‘)
w (=l (1)’ 3 (‘T; m%)
e B) = - i = Aa B 5
(Oz,())() | . Z! = qj \/g ()

where z; denotes the lifted point. And A”e"" (B) = 0 for all ¢ > 0. Similarly, for each target box C,

And we can update the projection matrix P by [P u] € R(w+1)x4_ However, as

new (Hﬁ” new B =Y
Clgn (€) = ﬂ'l XB: ; Zo) (B)H ot i) (W)
axpJ
B (Hﬁ”l B — Yc
_1)¢
_ Z-!) - C3(C).

Therefore, by enumerating all boxes 5,C and indices o, 8 < p, we can compute AE‘ZWO) (B) and

Cla (€) in log® ™ (||q||1/¢)-time. Then, we just follow the static subspace insertion procedure
to insert the new source point s. In this way, we obtain a data structure that can handle dynamic

low-rank subspaces.

4 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the Fast Gaussian Transform (FGT) in a dynamic setting and propose a
dynamic data structure to maintain the source vectors that support very fast kernel density estimation,
Mat-Vec queries (K- q), as well as updating the source vectors. We further show that the efficiency of
our algorithm can be improved when the data points lie in a low-dimensional subspace. Our results
are especially valuable when FGT is used in real-world applications with rapidly-evolving datasets,
e.g., online regression, federated learning, etc.

One open problem in this direction is, can we compute Kq in
O(N) +10g® D (N/e)

time? Currently, it takes NV logo(d) (N/e) time even in the static setting. The lower bounds in Alman
et al. (2020) indicate that this improvement is impossible for some “bad” kernels K which are very
non-smooth. It remains open when K is a Gaussian-like kernel. It might be helpful to apply more
complicated geometric data structures to maintain the interactions between data points. Another
open problem is, can we fast compute Mat-Vec product or KDE for slowly-decaying kernels? The
main difficulty is the current FMM techniques cannot achieve high accuracy when the kernel decays
slowly. New techniques might be required to resolve this problem.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. Advances in Neural Information Processing Systems, 28:775-783, 2015.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019b.

Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint
arXiv:2302.13214, 2023.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 541-552. IEEE, 2020.

Josh Alman, Gary Miller, Timothy Chu, Shyam Narayanan, Mark Sellke, and Zhao Song. Metric
transforms and low rank representations of kernels. In arXiv preprint, 2021.

Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time
preprocessing: Fast neural network training via weight-data correlation preprocessing. arXiv
preprint arXiv:2211.14227, 2022.

Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data
fitting. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (Approx-Random), 2017a.

Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir
Zandieh. Random fourier features for kernel ridge regression: Approximation bounds and statis-
tical guarantees. In International Conference on Machine Learning, pp. 253-262. PMLR, 2017b.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615-626. IEEE, 2018.

Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Subquadratic
algorithms for kernel matrices via kernel density estimation. In The Eleventh International Con-
ference on Learning Representations, 2023.

Bradley John Charles Baxter and George Roussos. A new error estimate of the fast gauss transform.
SIAM Journal on Scientific Computing, 24(1):257-259, 2002.

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. Wavelets, multilevel
methods and elliptic PDEs, 1:1-37, 1997.

Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A framework for adver-
sarially robust streaming algorithms. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
symposium on principles of database systems, pp. 63—80, 2020.

Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic trans-
formation. Journal of Algorithms, 1(4):301-358, 1980.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pp. 775-788, 2020.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS, 2021.

S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for hss representations
via sparse matrices. SIAM J. Matrix Anal. Appl., 29(1):67-81, dec 2006. ISSN 0895-4798. doi:
10.1137/050639028. URL https://doi.org/10.1137/050639028.

11

https://doi.org/10.1137/050639028

Under review as a conference paper at ICLR 2025

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp.
1032-1043. IEEE, 2017.

Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 769-792.
IEEE, 2019.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 172-183. IEEE, 2020.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable Ish framework for efficient
neural network training. In International Conference on Learning Representations (ICLR), 2020a.

Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In
defense of smart algorithms over hardware acceleration for large-scale deep learning systems.
Proceedings of Machine Learning and Systems, 2:291-306, 2020b.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. ICLR, 2021.

Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In Thirty-fourth
Conference on Neural Information Processing Systems (NeurlIPS), 2020.

Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for randomized hadamard
transforms with applications. arXiv preprint arXiv:2203.01599, 2022.

Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
Sidford. Uniform sampling for matrix approximation. In Tim Roughgarden (ed.), Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot,
Israel, January 11-13, 2015, pp. 181-190. ACM, 2015. doi: 10.1145/2688073.2688113. URL
https://doi.org/10.1145/2688073.2688113.

Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. An o (n) direct solver for integral
equations on the plane. Applied and Computational Harmonic Analysis, 38(2):284-317, 2015.

Eric Darve. The fast multipole method: numerical implementation. Journal of Computational
Physics 160.1, 2000.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023.

Jack Dongarra and Francis Sullivan. Guest editors’ introduction: The top 10 algorithms. Computing
in Science & Engineering, 2(1):22, 2000.

James R. Driscoll, Dennis M. Healy Jr., and Daniel N. Rockmore. Fast discrete polynomial trans-
forms with applications to data analysis for distance transitive graphs. SIAM J. Comput., 26(4):
1066-1099, 1997. doi: 10.1137/S0097539792240121. URL https://doi.org/10.1137/
S0097539792240121.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In ICLR, 2019.

Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius Vassiliou. The fast multipole
method for electromagnetic scattering computation. I[EEE Transactions on Antennas and Propa-
gation 40, pp. 634-641, 1992.

Jianqing Fan and Iréne Gijbels. Local polynomial modelling and its applications. Number 66 in
Monographs on statistics and applied probability series. Chapman & Hall, London [u.a.], 1996.
ISBN 0412983214. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&
IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy.

12

https://doi.org/10.1145/2688073.2688113
https://doi.org/10.1137/S0097539792240121
https://doi.org/10.1137/S0097539792240121
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+19282144X&sourceid=fbw_bibsonomy

Under review as a conference paper at ICLR 2025

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023a.

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023b.

Leslie Greengard. The rapid evaluation of potential fields in particle systems. MIT press, 1988.

Leslie Greengard. The numerical solution of the n-body problem. Computers in physics, 4(2):
142-152, 1990.

Leslie Greengard. Fast algorithms for classical physics. Science, 265(5174):909-914, 1994.

Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal of
computational physics, 73(2):325-348, 1987.

Leslie Greengard and Vladimir Rokhlin. The rapid evaluation of potential fields in three dimensions.
Vortex Methods. Springer, Berlin, Heidelberg, pp. 121-141, 1988.

Leslie Greengard and Vladimir Rokhlin. On the evaluation of electrostatic interactions in molecular
modeling. Chemica scripta, 29:139-144, 1989.

Leslie Greengard and Vladimir Rokhlin. An improved fast multipole algorithm in thre dimensions.
., 1996.

Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and Statis-
tical Computing, 12(1):79-94, 1991.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. CoRR, abs/2111.00396, 2021. URL https://arxiv.org/abs/2111.
00396.

Ming Gu and Stanley C. Eisenstat. A stable and efficient algorithm for the rank-one modification of
the symmetric eigenproblem. SIAM Journal on Matrix Analysis and Applications, 15:1266—-1276,
1994.

Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory of computing (STOC), pp. 121-130,
2013.

M Hermite. Sur un nouveau développement en série des fonctions. Imprimerie de Gauthier-Villars,
1864.

Einar Hille. A class of reciprocal functions. Annals of Mathematics, pp. 427-464, 1926.

Thomas Hofmann, Bernhard Scholkopf, and Alexander J Smola. Kernel methods in machine learn-
ing. The annals of statistics, 36(3):1171-1220, 2008.

Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural net-
works in sublinear time. arXiv preprint arXiv:2208.04508, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571—
8580, 2018.

Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric learning and fast
similarity search. In NIPS, volume 8, pp. 761-768. Citeseer, 2008.

Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regression. In ICLR,
2022.

Dongryeol Lee, Andrew Moore, and Alexander Gray. Dual-tree fast gauss transforms. Advances in
Neural Information Processing Systems, 18, 2005.

13

https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2111.00396

Under review as a conference paper at ICLR 2025

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage score
sampling for neural networks. In NeurIPS, 2020.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In NeurIPS, 2018.

Per-Gunnar Martinsson. Encyclopedia entry on “fast multipole methods”. In University
of Colorado at Boulder. http://amath.colorado.edu/faculty/martinss/2014_
CBMS/Refs/2012_fmm_encyclopedia.pdf, 2012.

Per-Gunnar Martinsson. Fast summation and multipole expansions. Lecture note, 2019.

Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally positive
definite functions. In Approximation theory and spline functions, pp. 143—145. Springer, 1984.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing systems, pp. 849-856, 2002.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Con-
tinual lifelong learning with neural networks: A review. Neural Networks, 113:54-71, 2019.
ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2019.01.012. URL https://www.
sciencedirect.com/science/article/pii/S0893608019300231.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Ad-
vances in neural information processing systems, pp. 1177-1184. https://people.eecs.
berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf, 2008.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (gpml)
toolbox. J. Mach. Learn. Res., 11:3011-3015, 2010. ISSN 1532-4435.

Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged
progress in structured dense matrix vector multiplication. In Artur Czumaj (ed.), Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pp. 1060—
1079. SIAM, 2018.

Bernhard Scholkopf and Alexander J. Smola. Learning with kernels : support vector machines, reg-
ularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press,
2002. URL http://www.worldcat.org/oclc/48970254.

Bernhard Scholkopf, Alexander J Smola, and Francis Bach. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

Erich Schubert, Arthur Zimek, and Hans Peter Kriegel. Generalized outlier detection with flexible
kernel density estimates. In Proceedings of the 2014 SIAM International Conference on Data
Mining, pp. 542-550, 2014.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge univer-
sity press, 2004.

Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value iteration via
locality sensitive hashing. arXiv preprint arXiv:2105.08285, 2021.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34, 2021a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural net-
work in subquadratic time. arXiv preprint arXiv:2112.07628, 2021b.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for
some well-known conditional gradient methods using maxip data-structures. Advances in Neural
Information Processing Systems (NeurlPS), 34, 2021.

Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved fast gauss
transform and efficient kernel density estimation. In Proceedings Ninth IEEE International Con-
ference on Computer Vision (ICCV). IEEE, 2003.

14

http://amath.colorado.edu/faculty/martinss/2014_CBMS/Refs/2012_fmm_encyclopedia.pdf
http://amath.colorado.edu/faculty/martinss/2014_CBMS/Refs/2012_fmm_encyclopedia.pdf
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
http://www.worldcat.org/oclc/48970254

Under review as a conference paper at ICLR 2025

Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using the im-
proved fast gauss transform. In NIPS, 2004.

Hongru Yang, Ziyu Jiang, Ruizhe Zhang, Zhangyang Wang, and Yingbin Liang. Convergence and
generalization of wide neural networks with large bias, 2023.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and mainte-
nance. Master’s thesis, Carnegie Mellon University, 2022.

15

Under review as a conference paper at ICLR 2025

APPENDIX

Roadmap. In Section A, we provide several notations and definitions about the Fast Multipole
Method. In Section B, we present the formal statement of our main result. In Section C, we present
our data-structures and algorithms. In Section D, we provide a complete and full for our results. In
Section E, we prove several lemmas to control the error. In Section F, we generalize our results to
low dimension subspace setting.

A PRELIMINARIES

We first give a quick overview of the high-level ideas of FMM in Section A.1. In Section A.2, we
provide a complete description and proof of correctness for the fast Gaussian transform, where the
kernel function is the Gaussian kernel. Although a number of researchers have used FMM in the
past, most of the previous papers about FMM either focus on low-dimensional or low-error cases.
We therefore focus on the superconstant-error, high dimensional case, and carefully analyze the joint
dependence on ¢ and d. We believe that our presentation of the original proof in Section A.2 is thus
of independent interest to the community.

A.1 FMM BACKGROUND

We begin with a description of high-level ideas of the Fast Multipole Method (FMM). Let K :
R?xR? — R denote a kernel function. The inputs to the FMM are N sources sy, S, -+ , sy € R?
and M targets tq,ts, -+ ,tp. Foreach i € [N], source s; has associated ‘strength’ ¢;. Suppose all
sources are in a ‘box’ I3 and all the targets are in a ‘box’ C. The goal is to evaluate

N
Uj = ZK(Siatj)qi7 VJ € [M]
=1

Intuitively, if K has some nice property (e.g. smooth), we can hope to approximate K in the following
sense:

P-1
K(s,t) = Y By(s) - Cp(t), s€BteC

p=0

for some functions B, C) : R? — R, where P is a small positive integer, usually called the
interaction rank in the literature Corona et al. (2015); Martinsson (2019).

Now, we can construct u; in two steps:

'Up:ZBp(si)qiv VPZOala aP_]-v

i€EB
and
P-1
Uy =Y Cpltj)vp, Vi€ [M].
p=0

Intuitively, as long as B and C are well-separated, then u; is very good estimation to u; even for
small P, i.e., |u; — u;| < e.

Recall that, at the beginning of this section, we assumed that all the sources are in the the same box
B and C. This is not true in general. To deal with this, we can discretize the continuous space into
a batch of boxes B1, B, --- and C1,Cs, - - -. For abox B;, and a box C,, if they are very far apart,
then the interaction between points within them is small, and we can ignore it. If the two boxes are
close, then we deal with them efficiently by truncating the high order expansion terms in K (only
keeping the first logo(d) (1/e) terms). For each box, we will see that the number of nearby relevant

boxes is at most log® (¥ (1 /¢).

16

Under review as a conference paper at ICLR 2025

A.2 FAST GAUSSIAN TRANSFORM

Given N vectors s1, -+ Sy € R%, M vectors ti, - ,tym € R? and a strength vector ¢ € R",
Greengard and Strain Greengard & Strain (1991) provided a fast algorithm for evaluating discrete
Gauss transform

N

G(t;) = que—nti—sju?/a

Jj=1

foralli € [M]in O(M + N) time. In this section, we re-prove the algorithm described in Greengard
& Strain (1991), and determine the exact dependence on € and d in the running time.

Without loss of generality, we can assume that all the sources s; and targets are belonging to the
unit box By = [0, 1]%. The reason is, if not, we can shift the origin and rescaling d.

Let t and s lie in d-dimensional Euclidean space R<, and consider the Gaussian

ellt=slE — o= T (ti—si)?

We begin with some definitions. One important tool we use is the Hermite polynomial, which is a
well-known class of orthogonal polynomials with respect to Gaussian measure and widely used in
analyzing Gaussian kernels.

Definition A.1 (One-dimensional Hermite polynomial, Hermite (1864)). The Hermite polynomials
h, : R — R is defined as follows

~ 2d"™ 2
= (=1 n t —t
hn(t) = (—1)"e —dte

The first few Hermite polynomials are:
hi(t) = 2t, ho(t) = 41> — 2, h(t) = 8> —12t, - --

Definition A.2 (One-dimensional Hermite function, Hermite (1864)). The Hermite functions h., :
R — R is defined as follows

We use the following Fact to simplify e~ (t=9)%/8,
Fact A.3. For so € Rand § > 0, we have

2 =1 s—so\" t—s
7(7575) /5: - 0 'hn< ())
‘ 2.5 (ﬁ) NG

n=0
and
(s _ =—s0?5 L (5—30>n W (t—80>
e =e . - hp .
20 75

Lemma A.4 (Cramer’s inequality for one-dimensional, Hille (1926)). For any K < 1.09,
T ()] < K27/2/nlel” /2.

Using Cramer’s inequality (Lemma A.4), we have the following standard bound.

Lemma A.5. For any constant K < 1.09, we have

|ha ()] < K - 272 A/l e 172,

Next, we will extend the above definitions and observations to the high dimensional case. To sim-
plify the discussion, we define multi-index notation. A multi-index o = (1, a9, -+ ,q) is a

17

Under review as a conference paper at ICLR 2025

d-tuple of nonnegative integers, playing the role of a multi-dimensional index. For any multi-index
a € R? and any t € R?, we write

d d
al = H(ai!)’ o — Ht?i, D* = 91052 -+ 95,

i=1 i=1

where 0; is the differential operator with respect to the i-th coordinate in R?. For integer p, we say

a < pif a; < p,Vi € [d]; and we say o > pif o; > p,Fi € [d]. We use these definitions to
_ N4

guarantee that {& < p} U {av > p} = N

We can now define multi-dimensional Hermite polynomial:

Definition A.6 (Multi-dimensional Hermite polynomial, Hermite (1864)). We define function ﬁa :
R? — R as follows:

d
Ho(t) = Hﬁa (t:).

Definition A.7 (Multi-dimensional Hermite function, Hermite (1864)). We define function H, :
R? — R as follows:

d
Hq(t) = Hhai (ti)
i=1
It is easy to see that Ha(t) = eItz . H, (¢)
The Hermite expansion of a Gaussian in R¢ is
o <ll2 t— So o
e llt=sll3 — Z %ha@ — 50).)

a>0
Cramer’s inequality generalizes to

Lemma A.8 (Cramer’s inequality for multi-dimensional case, Greengard & Strain (1991); Alman
etal. (2020)). Let K < (1.09)4, then

|Ho(t)] < K - elltlz/2 glleli/2. (/o
and

Ho(t)] < K - e 101372 gllalh/2 /g1

The Taylor series of H,, is

_ B
Ho(t) =) %(—D”"“W&w(to)- 5)

820

18

Under review as a conference paper at ICLR 2025

B OUR RESULT

L* | target

compute G(t) //* target compute G(t) /

— compute C(B,C)

compute C(B,C) JE—

- deleted point -
7/ compute A, (B) ; j/ compute Ay (B)

P
v e v

source source

Figure 3: An illustration of deleting a source point from the data structure.

B.1 PROPERTIES OF KERNEL FUNCTION

Alman et al. (2020) identified the three key properties of kernel functions K(s,t) = f(||s — t]|2)
which allow sub-quadratic matrix-vector multiplication via the fast Multipole method. Our dynamic
algorithm will work for any kernel satisfying these properties.

Definition B.1 (Properties of general kernel function, restatement of Definition 3.3, Alman et al.
(2020)). We define the following properties of the function f : R — R

* P1: f is non-increasing, i.e., f(x) < f(y) whenx > y.
» P2: fis decreasing fast, i.e., f(©(log(1/e))) < e.

e P3: f’s Hermite expansion and Taylor expansion are truncateable: the truncation error of
the first (log®(1/¢)) terms in the Hermite and Taylor expansion of K is at most e.

Remark B.2. We note that P3 can be replaced with the following more general property:

e Pd: K : RY x R? — R is {¢4 }acne-expansionable: there exist constants c,, that only
depend on o € N and functions ¢, : R® — R such that

K(s,t) = > Ca(s—50)" dalt — s0)

aeN?

for any s € R and s close to so. Moreover, the truncation error of the first (log®(1/¢))
terms is < €.

Remark B.3. Two examples of kernels that satisfy Properties 1 and 2 are:
e K(s,t) = eI~ for any o € R,

e K(s,t) = el forany p € N,.

B.2 DyNAMIC FGT

In this section, we present our main result. We first define the dynamic density-estimation mainte-
nance problem with respect to the Gaussian kernel.

Definition B.4 (Dynamic FGT Problem). We wish to design a data-structure that efficiently supports
any sequence of the following operations:

« INIT(S C R? g e RISl e € R) Let N = |S|. The data structure is given N source points
s1,-,8n € R with their charge q1,--- ,qn € R.

* INSERT(s € R?, q, € R) Add the source point s with its charge qs to the point set S.

» DELETE(s € R?) Delete s (and its charge qs) from the point set S.

19

Under review as a conference paper at ICLR 2025

Algorithm 1 Informal version of Algorithm 2, 3, 4 and 5.

1: data structure DYNAMICFGT > Theorem B.5
2: members

3: As(By),k € [N(B)],a<p
4: Oﬁ(ck)ak € [N(C)]vﬂ Sp
5. te,k € [N(C)]

6: sB,, k € [N(B)]

7:

end members

8: procedure UPDATE(s € R?, ¢ € R) > Informal version of Algorithm 4 and 5
9: Find the box s € By,
10: Update A, (By) forall a < p

11: Find (2k + 1)? nearest target boxes to By, denote by nb(1;,) >k <log(llg|l1/e)
12: for C; € nb(By) do
13: Update C;3(C;) forall 8 < p

14: end for
15: end procedure

16: procedure KDE-QUERY(t € R%) > Informal version of Algorithm 3
17: Find the box ¢ € Cy,

18: G(t) X pc, Co(Cr)((t — te,)/V5)?

19: end procedure

20: end data structure

« KDE-QUERY(t € R%) Qutput G such that G(t) —e < G < G(t) +«.

The main result of this paper is a fully-dynamic data structure supporting all of the above operations
in polylogarithmic time:
Theorem B.5 (Dynamic FGT Data Structure). Given N vectors S = {s1,--- , sy} C RY, a number

§ > 0, and a vector ¢ € RN, let G : R? — R be defined as G(t) = ZZ]\LI qi - K(s;,t) denote the
kernel-density of ¢ with respect to S, where K(s;,t) = f(||s; — t||2) for f satisfying the properties
in Definition 3.3 . There is a dynamic data structure that supports the following operations:

« INIT() (Algorithm 2) Preprocess in N - 10g” ¥ (||q||1/¢) time.
« KDE-QUERY(t € R?) (Algorithm 3) Output G such that G(t) — e < G < G(t) + ¢ in
log® D (|lql|1/) time.

* INSERT(s € R?, q, € R) (Algorithm 4) For any source point s € R% and its charge qs,
update the data structure by adding this source point in 1og® D (||q|l1 /€) time.

» DELETE(s € R?) (Algorithm 5) For any source point s € R% and its charge qs, update the
data structure by deleting this source point in 1og®'V (||q||1/¢) time.

* QUERY(q € RY) (Algorithm 3) Output Kg € RY such that |[Kq — Kqlloe < & where
K € RV*N s defined by K; ; = K(s;, s;) in N1og®D (|1 /e) time.
Remark B.6. The QUERY time can be further reduced when the change of the charge vector q is
sparsely changed between two consecutive queries. More specifically, let A := ||¢™®" — q||o be the
number of changed coordinates of q. Then, QUERY can be done in 6d(A) time.

20

Under review as a conference paper at ICLR 2025

C ALGORITHMS

Algorithm 2 This algorithm are the init part of Theorem B.5.

18:
19:
20:
21:
22:
23:

24
25:
26:

data structure DYNAMICFGT > Theorem B.5
members

Aa(Bk),k € [N(B)],a <p

Cs(Cr), k € [N(O),B<p

th ke [N(C)]

By, k € [N(B)]

end members

procedure INIT({s; € R, j € [N]}, {g; € R,j € [N]})

p < log(llqll1/e)

Assign N sources into N (B) boxes By, ..., By(p) of length /o
Divide space into N (C') boxes C1, . ..,Cn(c) of length /o

Set center s, , k € [N(B)] of source boxes B, ..., By (p)

Set centers ¢, , k € [N(C)] of target boxes C1, . ..,Cn(c)

for k € [N(B)] do > Source box By, with center sp,
for o < pdo >wesay a < pif a; < p,Vi € [d]
Compute

_qyllall s — sp \©
a0 3w ()

s;EBy

> Takes p® N time in total

end for
end for
for k € [N(C)] do > Target box Cj, with center t¢,
Find (2k + 1)? nearest source boxes to Cy., denote by nb(Cy,) >k <log(llgll1/e)
for 5 <pdo
Compute

—_IBlh sp, — te,
R =D DD DY N AN Cvy

Bienb(Cr) a<p

> Takes N (C) - (2k + 1)%dp?*! time in total
> N(C) < min{(rv/26)~%2 M}
end for
end for

27: end procedure
28: end data structure

21

Under review as a conference paper at ICLR 2025

Algorithm 3 This algorithm is the query part of Theorem B.5.

1: data structure DYNAMICFGT

2: procedure KDE-QUERY(t € R%)
3: Find the box t € C;,

4: Compute

3 8
Gylt) - X Coln) ()

B<p

5: return G, (t)

6: end procedure

7: procedure QUERY(q € RY)
8: INIT({s;,j € [N]},9)

9: for j € [N] do

10: u; < LOCAL-QUERY(s;)
11: end for
12: return u

13: end procedure
14: end data structure

> Takes p? time in total

> Takes O(N) time

> [lu —Kglloo <€

22

Under review as a conference paper at ICLR 2025

Algorithm 4 This algorithm is the update part of Theorem B.5.

1: data structure DYNAMICFGT > Theorem B.5
2: members > This is exact same as the members in Algorithm 2.
3 Au(Br),k€[N(B),a<p

4: C3(Ck), ke [N(C),B<p

5: te,, k € [N(C)]

6: sB,, k € [N(B)]

7: end members

8:

9: procedure INSERT(s € R?, ¢ € R)

10: Find the box s € B,

11: for o < pdo >wesay a < pifa; < p,Vi € [d]
12: Compute

(_1)\|C¥H1q S — 5By

ANV (Bg) + Aa(Br) +)

a! NZ)
> Takes p? time
13: end for
14: Find (2k + 1)9 nearest target boxes to By, denote by nb(By,) >k <log(l|lgll1/¢e)
15: for C; € nb(By) do
16: for 5 < pdo
17: Compute
_1)l8Ih sp, —t
o (@)« Ca() + T 3 (A (B - Aa(B) - Hoss (221
a<p

> Takes (2k + 1)p? time
18: end for
19: end for
20: for a < pdo
21: A (By) < AV (By) > Takes p? time
22: end for
23: for C; € nb(By) do
24: for 5 < pdo
25: Cs(C1) < C5™(C1) > Takes (2k + 1)9p? time
26: end for
27: end for

28: end procedure
29: end data structure

23

Under review as a conference paper at ICLR 2025

Algorithm 5 This algorithm is another update part of Theorem B.5.

1: data structure DYNAMICFGT
2: members

3:

4
5:
6:
7.
8

AO&(Bk)ak € [N(B)],O[<p
Cﬁ(ck)ak € [N(O)]vﬂ Sp
te,, k € [N(C)]

5B, k € [N(B)]

0eR

: end members
9:

10: procedure DELETE(s € R, g € R)

11:
12:
13:

14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Find the box s € By,
for o < pdo >wesay a < pif a; < p,Vi € [d]
Compute

Ancw(B) — A (B) (_1)“aqu 5 — 8By “
o k a\RPk ol \/g
> Takes p¢ time
end for
Find (2k + 1)9 nearest target boxes to By, denote by nb(},) >k <log(|lglli/e)
for C; € nb(By,) do
for 5 < pdo
Compute

—_IBlh SBr —
CE (Cr) + Cs(Cr) + % Z (Aa™(Br) = Aa(Br)) - Hassp <Bk\[6tCZ>

a<p

> Takes (2k + 1)9p? time
end for
end for
for a < pdo
Aa(Br) < AL (Br) > Takes p? time
end for
for C; € nb(Bk) do
for 5 < pdo
Cp(C1) « CE™(Cr) > Takes (2k + 1)%p? time
end for
end for

29: end procedure
30: end data structure

24

Under review as a conference paper at ICLR 2025

D ANALYSIS

Proof of Theorem B.5. Correctness of KDE-QUERY. Algorithm 2 accumulates all sources into
truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
Lemma E.5, thus it can approximate the function G(t) b

=SS gy el

B jeB
—tc p
= Z Cs () + Errr(p) + Errg(p)

where |Errg (p)| + IEH"T(p)\ < Q - by p = log(|lq]|1/¢),

1)l8h COV s~ s <53\/gtc>

B a<p

and the coefficients A, (B) are defined as Eq. (3).

Running time of KDE-QUERY. In line 17, it takes O(p?N) time to compute all the Hermite
expansions, i.e., to compute the coefficients A, (B3) for all a < p and all sources boxes B.

Making use of the large product in the definition of H, 3, we see that the time to compute the p?
coefficients of Cs is only O(dp?*!) for each box B in the range. Thus, we know for each target box
C, the running time is O((2k + 1)%dp?*1), thus the total time in line 23 is

O(N(C) - (2k + 1)%dp*t1).

Finally we need to evaluate the appropriate Taylor series for each target ¢;, which can be done in
O(p?M) time in line 4. Putting it all together, Algorithm 2 takes time

O((2k + 1)%dp*™ ' N(C)) + O(p?N) + O(p* M)
=0 (M +N)10g” (gl /<)) -

Correctness of UPDATE. Algorithm 4 and Algorithm 5 maintains C as follows,

1)l8h CO S5y s <55ﬁtc>

B a<p
>O¢

Running time of UPDATE. In line 12, it takes O(p?) time to update all the Hermite expansions, i.e.
to update the coefficients A, (B) for all & < p and all sources boxes B.

where A, (B) is given by

1)lledh
Aa(B qu (

JEB

Therefore, the correctness follows similarly from Algorithm 2.

Making use of the large product in the definition of H, 3, we see that the time to compute the p?
coefficients of Cs is only O(dp®*!) for each box C; € nb(By,). Thus, thus the total time in line 17

is
O((2k + 1)%dpt).
Correctness of QUERY. To compute Kg for a given ¢ € RY, notice that for any i € [N],

N
(Kq); = qu e llsi—s;ll3/6
Jj=1

25

Under review as a conference paper at ICLR 2025

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t)
immediately gives the /..-error guarantee for Kgq.

Running time of QUERY. We first build the data structure with the charge vector ¢ given in the
query, which takes O4(N) time. Then, we perform N KDE-Query, each takes O4(1). Hence, the
total running time is O4(N).

We note that when the charge vector ¢ is slowly changing, i.e., A := ||¢"*" — ¢|lo < o(V), we can
UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes O4(1)
time, it will take O4(A) time to update the data structure.

Then, consider computing Kg™°" in this setting. We note that each source box can only affect 5(1(1)

other target boxes, where the target vectors are just the source vectors in this setting. Hence, there

are at most 5d(A) boxes whose Cp is changed. Let S denote the indices of source vectors in these
boxes. Since

Gsi) = 3 Ca(By) - <S'_\/§B>B

B<p

we get that there are at most 6d(A) coordinates of Kg"°"V that are significantly changed from Kg,
and we only need to re-compute G(s;) for i € S. If we assume that the source vectors are well-

separated, i.e., |S| = O(6), the total computational cost is O4(A).

Therefore, when the change of the charge vector ¢ is sparse, Kq can be computed in sublinear
time. O

E ERROR ESTIMATION

This section provides several technical lemma that are used in Appendix D. We first give a definition.
Definition E.1 (Hermite expansion and coefficients). Let B denote a box with center s € R® and

side length r~/20 with v < 1. If source s; is in box B, we will simply denote as j € B. Then the
Gaussian evaluation from the sources in box B is,

G(t) = qu e llt=sill3/0

JjEB
The Hermite expansion of G(t) is
t— sg
Gt =S A, H, () , ©)
Lt G
where the coefficients A, are defined by
1 si—sg\°
A:Zq--(]) ™
* jes V6

The rest of this section will present a batch of Lemmas that bound the error of the function truncated
at certain degree of Taylor and Hermite expansion.

We first upper bound the truncation error of Hermite expansion.

Lemma E.2 (Truncated Hermite expansion). Let p denote an integer, let Err g (p) denote the error
after truncating the series G(t) (as defined in Eq. (6)) after p terms, i.e.,

Errg(p) = Y Aa- H, (t_sg) (8)

azp \/S
Then we have
Sienltil &2 (d AN
Brr (p)] < S9€8191 ()1_rpk()
Brou)] < TS ()0 (7
whererﬁ%.

26

Under review as a conference paper at ICLR 2025

Proof. Using Eq. (4) to expand each Gaussian (see Definition E.1) in the
G(t) = Z qj . e_Ht_sj Hg/é

JjEB

into a Hermite series about sz:
1 8 — S8 * t—sp
Soya(M50) (550
jeB as0 Vo Vo
and swap the summation over « and j to obtain the desired form:
1 sst)a (t53> <tsB)
il qi - H, = A H, .
S (2 72) =S (g

a>0 ' jen
Here, the truncation error bound is due to Lemma A.8 and the standard equation for the tail of a
geometric series.

To formally bound the truncation error, we first rewrite the Hermit expansion as follows

i=1 \n;=1

Notice from Cramer’s inequality (Lemma A.5),

B, (“_(35’)1> < pl. 92, o= (ti—(s8))%/2,
i \/S -

Therefore we can use properties of the geometric series (notice % <r/ v/2) to bound each
term in the product as follows

n;=1

and
— 1 (s5)i — (sB)i " ti — (s8)i 1 rP
(o) ()

Now we come back to bound Eq. (8) as follows

o= 320 4 () e (572)

JjEB a>p
d p—1 n
_ _le=sjl3 1 ((s5)i—(sB)i\ ti — (sB)i
&) (Z(i) U

RS (o (7)”

where the first step comes from definition, the second step comes from Eq. (9) and the last step
comes from Eq. (10) and Eq. (11) and binomial expansion.

O

Remark E.3. By Stirling’s formula, it is easy to see that when we take p = log(||q||1/¢), this error
will be bounded by ||q||1 - €.

27

Under review as a conference paper at ICLR 2025

The Lemma E.4 shows how to convert a Hermite expansion at location sp into a Taylor expansion
at location t¢. Intuitively, the Taylor series converges rapidly in the box (that has side length rv/26
center around t¢, where r € (0, 1)).

Lemma E.4 (Hermite expansion with truncated Taylor expansion). Suppose the Hermite expansion

of G(t) is given by Eq. (6), i.e.,
t—sp
= E A, - H, . 12
() (2

a>0

Then, the Taylor expansion of G(t) at an arbitrary point to can be written as:

()

B>0
where the coefficients Bg are defined as
(—1)lI8Ih ol (SB—to)
Bg=—F"— -1l A, - H, — . (14)
B Bl ;}() +8 \/g

Let Errr(p) denote the error by truncating the Taylor expansion after p® terms, in the box C (that
has center at t¢ and side length r+/20), i.e.,

Errr(p ZB»B (t_tc>

B>p

Then
Sieslail &2 (d P\ 4k
< JE J _ ..p\k
e < Y (D= ()
k=0
where r < 1/2.

Proof. Each Hermite function in Eq. (12) can be expanded into a Taylor series by means of Eq. (5).
The expansion in Eq. (13) is due to swapping the order of summation.

Next, we will bound the truncation error. Using Eq. (7) for A, we can rewrite Bg:

(=1l ol sg — te
Bs=-~——2— S (=)l a,H,
T Z;‘O *ﬁ(Vo)
_ (=8 1)l “\, sp —te
el 2]EZBQJ() “*ﬁ(Vs >

A () (57

JjEB a>0

By Eq. (5), the inner sum is the Taylor expansion of H((s; — tc)/v/d). Thus

Hﬁ”l s; —te
e WA CS

JjEB

and Cramer’s inequality implies
ollBllx/2

VB!

|Bﬁ| < %K Q32H5H1/2m: KQB

28

Under review as a conference paper at ICLR 2025

To formally bound the truncation error, we have

t—te\?
Errp(p ZBB<)

B>p

cwan (1S e (5)) TS ())
i=1 \n;=0 V' i=1

qu'_o
d-1 d—k
< 2jeslal <d) (1)t (r”)
=a-nt 2\ Vil
where the second step uses |Bg| < KQp 2”3‘1 and the rest are similar to those in Lemma E.2. [

For designing our algorithm, we would like to make a variant of Lemma E.4 that combines the
truncations of Hermite expansion and Taylor expansion. More specifically, we first truncate the
Taylor expansion of G, (), and then truncate the Hermite expansion in Eq. (14) for the coefficients.

Lemma E.5 (Truncated Hermite expansion with truncated Taylor expansion). Let G(t) be defined
as Def E.1. For an integer p, let G, (t) denote the Hermite expansion of G(t) truncated at p, i.e.,

)= A.H, (t:/gB).

a<p

The Taylor expansion of function G (t) at an arbitrary point toy can be written as:
t—1t

NN

B>0

where the coefficients C are defined as

Cy = (—1;"’3' S (-n)lela, - H, (53\/_3’*). (15)

a<p

Let Errr(p) denote the error in truncating the Taylor series after p® terms, in the box C (that has
center t¢ and side length r/20), i.e.,

t—te\?
Errp(p ZCﬁ(>

B>p

Then, we have

k=0
where r < 1/2.

Proof. We can write CB in the following way:

R) 5

jeB a<p
EU S [-) SO (2550 s ()
JjeEB a>0 a>p \/g \/3
HBHl \alll —sg\“ sp —te
S YO () e (%7)
jeB a>p \/g \/g
=B + (Cﬁ — Bg)

29

Under review as a conference paper at ICLR 2025

Next, we have

|Errr(p)] < | Bs (t\/gc)ﬁ +|Y (Cs—Bg)- (tw?)ﬁ (16)

B>p B>p

Using Lemma E.4, we can upper bound the first term in the Eq. (16) by,

35, (1) | < Tl (4 e (1)
B\ T 5 = (1=p)d - N :
27\ -7 2=\ Vil
Since we can similarly bound Cg — Bj as follows

9lBll1/2
VBl

|Cs — By| < %K -Qp2lPI2 /Bl < KQp

we have the same bound for the second term

pe-o () |< B (go-er ()"

O

The proof of the following Lemma is almost identical, but it directly bounds the truncation error of
Taylor expansion of the Gaussian kernel. We omit the proof here.

Lemma E.6 (Truncated Taylor expansion). Let G, (t) : R? — R be defined as
G, (t) = q; - e t=s313/9,
The Taylor expansion of G, (t) at tc € R% is:

Gy () =3 By (%C)B,

B=0

where the coefficients Bg is defined as

(—1)l8l: o ¢
By =y S, (V)

and the absolute value of the error (truncation after p® terms) can be upper bounded as

|Errr (p)| < Wd_l (:)(1 Y (\;;)d‘k

k=0

where r < 1/2.

F Low DIMENSION SUBSPACE FGT

In this section, we consider FGT for data in a lower dimensional subspace of R%. The problem is
formally defined below:

Problem F.1 (Dynamic FGT on a low dimensional set). Let W be a subspace of R® with dimension
dim(S) = w < d. Given N source points s1,...,sn € W with charges q1, . . . ,qn, and M target
points ty, ...ty € W, find a dynamic data structure that supports the following operations:

* INSERT/DELETE(S;, q;) Insert or Delete a source point s; € R? along with its “charge”
¢ € R, inlog®™ (||q||1/e) time.

30

Under review as a conference paper at ICLR 2025

Algorithm 6 Initialization of low-dim FGT.

1: data structure DYNAMICFGT
: members

2 Ay(B,),i € [N(B)],«
1 Cp(Ci),i € [N(O)], B

2

3 <
4 <
5 te,,i € [N(C)]

6

7

8

p
p
. sB;,1 € [N(B)]

: end members

9: procedure INIT({s; € R?,j € [N]}, {g; € R,j € [N]})

10: p<log(llqlli/e)
11: Compute SVD: (Uy, X, V) < SVD ((S1,..., SN, t1, .-, tam))

UoSVy" = (51, 8N, t1,. -5 tar), Up € RIX4 S € RIXINHM) 7y ¢ RINFM)x(N+M)
13: Let B <~ UpX: 1.0 € Réxw > Y. 1., denotes the first w columns of X
14: Compute the spectral decomposition UAU T = BT B, and let P < A—1/2U~1BT ¢ Rw*4

15: for i € [N]and j € [M] do

16: XTi < Psi,yj — Ptj

17: end for

18: Assign z1,...,ry into N(B) boxes Bi, ..., By(p) of length /o
19: Divide R" into N(C) boxes Cy, . ..,Cn(c) of length V2

20: Set center x5, i € [N (B)] of source boxes By, ..., By(p)

21: Set centers yc,,j € [N(C)] of target boxes Cy, ...,Cn(c)

22: for! € [N(B)] do > Source box 5; with center s,
23: for o < pdo >wesay a < pif a; < p, Vi € [w]
24: Compute

_1ylals N
W C

> Takes p N time in total

zj enB;
25: end for
26: end for
27: for I € [N(C)] do > Target box C; with center ¢,
28: Find (2k + 1)% nearest source boxes to C;, denote by nb(C;) >k < log(|lqll1/e)
29: for 5 <pdo
30: Compute

118l TR —
Cate) - U Y S0 Aa(l) - Has (1)

Benb(Cy) alp

> Takes N (C) - (2k + 1)“dp**! time in total

31 > N(C) < min{(rv/26)~%2 M}
32: end for
33: end for

34: end procedure
35: end data structure

* DENSITY-ESTIMATION(t € R?) For any point t € R, output the kernel density of t with

respect to the sources, i.e., output G such that G(t)—e < G < G(t)+¢ inlog® ™ (||q||1/¢)
time.

* QUERY(q¢ € RY) Given an arbitrary query vector ¢ € RY, output Pf(\c/] in N -
1og”™(|lq /¢) time.

31

Under review as a conference paper at ICLR 2025

Algorithm 7 This algorithm is the query part of Theorem F.2.

1: data structure DYNAMICFGT

2: procedure KDE-QUERY(t € R?)

3: Find the box Pt € C;

4: Compute > Takes p* time in total

B 8
Gult) - ot - (H))

B<p

5: return G, (t)

6: end procedure

7: procedure QUERY(q € RY)
8

: INIT({s;,5 € [N]}, @) > Takes O(N) time
9: for j € [N] do
10: u; <~ LOCAL-QUERY(s;) > lju— Kglloo <€
11: end for
12: return u

13: end procedure
14: end data structure

We generalize our dynamic data structure to solve Problem F.1, which is stated in the following
theorem. The computational cost of each update or query depends on the intrinsic dimension w
instead of d.

Theorem F.2 (Low Rank Dynamic FGT Data Structure, formal version of Theorem 1.1). Let W be
a subspace of R with dimension dim(S) = w < d. Given N source points s1,...,sy € W with
charges qi, ..., qn, and M target points ty, ..., tyr € W, a number § > 0, and a vector q € RY,
let G : R — R be defined as G(t) = Zil qi - K(si,t) denote the kernel-density of t with respect
to S, where K(s;,t) = f(||s; — t||2) for f satisfying the properties in Definition 3.3 . There is a
dynamic data structure that supports the following operations:

« INIT() (Algorithm 6) Preprocess in N -10g® ™) (||q|l1 /¢) time.
« KDE-QUERY(t € RY) (Algorithm 7) Output G such that G(t) — e < G < G(t) + ¢ in
1og”)(|lq]|1/e) time.

* INSERT(s € R?, ¢, € R) (Algorithm 8) For any source point s € R and its charge q.,
update the data structure by adding this source point in logo(w)(HqH 1/€) time.

» DELETE(s € R?) (Algorithm 9) For any source point s € R and its charge qs, update the
data structure by deleting this source point in 1og® ™ (||q||1 /¢) time.

* QUERY(q € RY) (Algorithm 7) Output Kq € RN such that ||Pf(\(/] — Kqlloo < &, where
K € RV*N s defined by K; ; = K(s;, s;) in N1og®™@ (|lq|l1/e) time.

F.1 PROJECTION LEMMA

Lemma F.3 (Hermite projection lemma in low-dimensional space, formal version of Lemma 3.5).
Given a subspace B € R¥™™. Let B'TB = UAUT € RY*¥ denote the spectral decomposition
where U € RY*"Y and a diagonal matrix A € R*¥*%.

We define P = A='/2U-'BT € R“*? Then we have for any t,s € R% from subspace B, the
Jfollowing equation holds

e IslE/s = § (\/mpof!t —) (T3P (- s).

a>0

32

Under review as a conference paper at ICLR 2025

Algorithm 8 This algorithm is the update part of Theorem F.2.

1: data structure DYNAMICFGT
2: members > This is exact same as the members in Algorithm 6.

3 Au(By),i € [N(B)l,a<p

4: Cs(Ci),i € [N(O)],B<p

5 e € [N(O)

6: sB,,1 € [N(B)]

7: end members

8:

9: procedure INSERT(s € R?, ¢ € R)

10: Find the box s € B

11: for o < pdo >wesay a < pifa; < p,Vi € [w]
12: Compute

(_1)|la\llq P(s — sg)

new [e3%
A2V (B) + Ay (B) + o 7)
> Takes p" time
13: end for
14: Find (2k + 1)™ nearest target boxes to 13, denote by nb(5) >k <log(||gll1/¢e)
15: for C; € nb(B) do
16: for 5 < pdo
17: Compute
—1) I8l _
CE (@) o)+ EH T (ARV(B) ~ AulB) - Hops (2210
st = Vo

> Takes (2k + 1)*“p" time
18: end for
19: end for
20: for a < pdo
21: Ay (B) < ALY (B) > Takes p* time
22: end for
23: for C; € nb(B) do
24: for 5 < pdo
25: Cs(C1) < CE™(Cr) > Takes (2k + 1)"p™ time
26: end for

27: end for
28: end procedure
29: end data structure

Proof. First, we know that

Pt=A"Y2U'BT¢
=A"Y?U"'B "Bz
= A Y2UTUAU T
=A2PAU T2
=AUz (17)

where the first step follows from P = A=1/2U~1 BT, the second step follows from ¢ = Bz (since ¢
is from low dimension, then there is always a vector x), the third step follows B TB=UAUT, the
forth step follows U ~'U = I, and the last step follows from A~1/2A = A1/,

Compute the spectral decomposition B'B = UAU T, U € R¥*% is the orthonormal basis, A =
diag(A1, ..., g) € R¥*¥, Let u; € R™ denote the vector that is the transpose of i-th row U €

33

Under review as a conference paper at ICLR 2025

Algorithm 9 This algorithm is another update part of Theorem F.2.

1: data structure DYNAMICFGT
2: members

3:

4
5:
6:
7.
8

Aa(By).i € [N(B)],a <
Cs(Ci),i € [N(C)], B <
te, i € [N(O)]

sB;,1 € [N(B)]

0eR

p
p

: end members
9:

10: procedure DELETE(s € R, g € R)

11:
12:
13:

14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Find the box s € B
for « < pdo >wesay o < pifa; < p,Vi € [w]

Compute "
1)\ lellx s—s o
AECW(B) s AQ(B) _ (1)0[' q <P(\/3 B))

> Takes p™ time
end for
Find (2k + 1) nearest target boxes to 3, denote by nb(3) >k <log(||lgll1/¢e)
for C; € nb(B) do
for 5 < pdo
Compute

(,1)HBH1
B!

57 (AL () — Aa(B) - Hopa (1))

a<p

C5™(C) = Cp(Cr) +

> Takes (2k + 1)*p™ time
end for
end for
for a < pdo
Ay (B) + ARV (B) > Takes p* time
end for
for C; € nb(B) do
for 5 <pdo
Cs(C1) < C5(Cr) > Takes (2k + 1)“p™ time
end for
end for

29: end procedure
30: end data structure

R¥*%_ Then we have

o—lt=sl3/5 _ o—(@—v) BT Bz-v)/
— o (@) UAUT (z~y)/s

w o0

i=1 n=1

s (mAl/QUT(w - y))a

a!

ha (VIOAYAUT (2~)

a>0

:Z_:(M-Pu—s)

al

) -ha(\/W-P(t—s))

a>0

where the first step follows from changing the basis preserves the ¢s-distance, the second step fol-
lows from BT B = UAU ", and the fifth step follows from Eq. (17). O

34

Under review as a conference paper at ICLR 2025

F.2 PROOF OF MAIN RESULT IN LOW-DIMENSIONAL CASE

Proof of Theorem F.2. Correctness of KDE-QUERY. Algorithm 6 accumulates all sources into
truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via
Lemma F.4. Thus it can approximate the function G(t) b

= 35 gy el

B jeB
te) B
= Z Cs < > + Errr(p) + Errg (p)
B<p
where [Erry (p)| + |EHT(P)\ < Q-ebyp=log([lqll1/e),
||5”1 ZZ (P(SBtC))
Hoyp | ——F=—
B a<p ﬁ
and the coefficients A, (B) are defined as Line 24.

Running time of KDE-QUERY. In line 24, it takes O(p"” N) time to compute all the Hermite
expansions, i.e., to compute the coefficients A, (B) for all & < p and all source boxes B.

Making use of the large product in the definition of H, g, we see that the time to compute the p*
coefficients of Cj is only O(dp“*1) for each box B in the range. Thus, we know for each target box
C, the running time is O((2k + 1)“dp®*1), thus the total time in line 30 is

O(N(O) - (2k 4 1)“dp™™H).
Finally, we need to evaluate the appropriate Taylor series for each target ¢;, which can be done in
O(p* M) time in line 4. Putting it all together, Algorithm 6 takes time
O((2k + 1)dp“ T N(C)) + O(p“ N) + O(p“ M)
=0 (M + N)10g°™ (|}l /<))

Correctness of UPDATE. Algorithm 8 and Algorithm 9 maintains Cjg as follows,
1)1l ZZ (P(SB—tc))
= Hoyp NG
where A, (B) is given by
1)lledlx —s5)\"
AalB) === 20 (Fez)
Therefore, the correctness follows similarly from Algorithm 6.

Running time of UPDATE. In line 12, it takes O(p"™) time to update all the Hermite expansions,
i.e. to update the coefficients A, (B) for all & < p and all sources boxes B.

Making use of the large product in the definition of H, g, we see that the time to compute the p*
coefficients of Cz is only O(dp™” ™) for each box C; € nb(B). Thus, thus the total time in line 17 is

O((2k + 1)“dp™ ™).

Correctness of QUERY. To compute Kgq for a given ¢ € R", notice that for any ¢ € [N],

N
(Kq); = qu e llsi—s;ll3/6
Jj=1

35

Under review as a conference paper at ICLR 2025

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for G(t)
immediately gives the /..-error guarantee for Kgq.

Running time of QUERY We first build the data structure with the charge vector ¢ given in the
query, which takes Od() time. Then, we perform N KDE-Query, each takes Od(). Hence, the
total running time is Od().

We note that when the charge vector ¢ is slowly changing, i.e., A := ||¢"*" — ¢|lo < o(V), we can
UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes O4(1)
time, it will take O4(A) time to update the data structure.

Then, consider computing Kg™°" in this setting. We note that each source box can only affect 5(1(1)

other target boxes, where the target vectors are just the source vectors in this setting. Hence, there

are at most 5d(A) boxes whose Cp is changed. Let S denote the indices of source vectors in these
boxes. Since

ERP T (= ﬁsm))ﬁ’

we get that there are at most 6d(A) coordinates of Kg"°" that are significantly changed from Kg,
and we only need to re-compute G(s;) for i € S. If we assume that the source vectors are well-

separated, i.e., |S| = O(6), the total computational cost is Og(A).

Therefore, when the change of the charge vector ¢ is sparse, Kq can be computed in sublinear
time. O

Lemma F.4 (Truncated Hermite expansion with truncated Taylor expansion (low dimension version
of Lemma E.5)). Ler G(t) be defined as Def E.1. For an integer p, let G, (t) denote the Hermite

expansion of G(t) truncated at p, i.e.,
- Z AL H., (P(t_SB)> .
Ve

a<p

The Taylor expansion of function G, (t) at an arbitrary point t, can be written as:

Z h) ﬁ
Cps - () ,
550 \[

where the coefficients Cg are defined as

Cy— (—1;"5' S (1)l Ay - He (P(SB\/_;C)). (18)

a<p

Let Errp(p) denote the error in truncating the Taylor series after p* terms, in the box C (that has
center te and side length rv/20), i.e.,

Berr (p ZCB(t—te))

BZp

Then, we have

QZ B|qj|w—1 w rP w—1
Errr(p)] < - 229€8 %] ()1_74”()
Bl < <2 3 () u - (7
where r < 1/2.

36

Under review as a conference paper at ICLR 2025

Proof. We can write C in the following way:

R e ()

jeEB a<p
_ 5, 1)I81h JGZL; (; 1)lledh ((sj\/_gsg)rﬂaw (P(S% tc)>
=Bs+ (C,B — Bg)

Next, we have

|[Errr(p)] < ZBﬂ())ﬁ +[D_(Cs— Bg) - (P(t\};c)f (19)

Bzp B>p
Using Lemma E.4, we can upper bound the first term in the Eq. (19) by,
ZBﬂ < (t— tc))ﬂ < ZjEB |g ks <w)(1 _ Pyl (7’p>w_l'
= (1—r)w e l V!
Since we can similarly bound Cg — Bg as follows
ollBll/2

QB\/E,

1
|Cs — Bg| < EK.QBQHBIIMZ\/ES K

we have the same bound for the second term

Dm0 (P5) |« Bl S 1o (55)”

B=p

F.3 DyNaMIC LOW-RANK FGT WITH INCREASING RANK

We further give an algorithm for FGT when the low-dimensional subspace is dynamic, i.e., the rank
may increase with data insertions.

Theorem F.5 (Low Rank Dynamic FGT Data Structure). Let W be a subspace of R with dimension
dim(S) = w < d. Given N source points s1,...,sn € W with charges q1, . . . ,qn, and M target
points ty,...,tyy € W, a number § > 0, and a vector ¢ € RY, let G : R? — R be defined
as G(t) = va:l qi - K(s;,t) denote the kernel-density of ¢ with respect to S, where K(s;,t) =
f(lsi —tl|2) for f satisfying the properties in Definition 3.3 . There is a dynamic data structure that
supports the following operations:

O(w)

* INIT() (Algorithm 6) Preprocess in N -log~*"(||q||1/¢) time.

« KDE-QUERY(t € R%) (Algorithm 7) Output G such that G(t) —e < G < G(t) + ¢ in
10g?“(|lqll1 /) time.

* INSERT(s € R% ¢, € R) (Algorithm 10) For any source point s € R? and its charge

qs, update the data structure by adding this source point in 1og® ™ (||q||1/¢) time. The
subspace dimension w may be increased by 1 if s is not in the original subspace.

« QUERY(q € RY) (Algorithm 7) Output Kg € RY such that ||R71 — Kqlloo < & where
K € RVXN s defined by K; ; = K(s;, s;) in N1og® ™ (|lq|l1/€) time.

37

Under review as a conference paper at ICLR 2025

Algorithm 10 This algorithm is the update part of Theorem F.5.

1: data structure DYNAMICFGT
2: members

3: keN > Rank of span(sy,...,Sn,t1,...,tnr)
4: Ay(By),l € [N(B)],a<p
5. CalC) e N B < p
6: tg,l €[N(C)]
7: sp,,l € [N(B)]
8: P e Rwxd
9: end members
10:
11: procedure INSERT(s € R?, ¢ € R)
12: SCALE(s, q)
13: Find the box s € B
14: for o < pdo >wesay a < pif o; < p, Vi € [w]
15: Compute
new (71)”(1"1(1 P(Si SB) «
ALY(B) + An(B) + o 7)
> Takes p” time
16: end for
17: Find (2k + 1) nearest target boxes to 3, denote by nb(3) >k <log(l|lgll1/¢e)
18: for C; € nb(B) and 8 < p do
19: Compute
—1)lIBlh P(sp — ¢
C (@) - Ca(@) + U S (4 (B) - Au(B) - Havs (P02 1))
as<p
> Takes (2k + 1)"“p™ time
20: end for
21: for a < pdo
22: Ay (B) < ALY (B) > Takes p* time
23: end for
24: for C; € nb(B) and 8 < pdo
25: Cs(C1) < C5(Cr) > Takes (2k + 1)“p™ time

26: end for
27: end procedure
28: end data structure

Proof. Since Algorithm 10 updates A,,Cj3 in the same way as Algorithm 8, the correctness of

Procedures KDE-QUERY and QUERY follows similarly from Theorem B.5.

Furthermore, SCALE takes O(wd 4+ (N(B) + N(C)) - p*) time. For the correctness, we know that
the rows of P form an orthonormal basis for the subspace. For a newly inserted point s, if it is not lie
in the subspace, (I — P)s gives a new basis direction. Therefore, we can easily update P by attaching
this vector (after normalization) as a column. Then, we show that the intermediate variables A, and
C'g can be correctly updated for the new subspace. For each source box B and each w-tuple o < p,

we have

_ el . (1) 7 — (e,2)
?ZV’%)(B):MZCIJ”(j B) — 44(B),

' . .'
(022
jEB

38

Under review as a conference paper at ICLR 2025

Algorithm 11 This algorithm is another part of Theorem E.5.

1: data structure DYNAMICFGT
2: members
3: weN > Rank of span(sy,...,Sn,t1,...,tnr)

4: A(X(Bl)vl S [(B)] S p
55 Ca(@).l € N(O)].B <p
6: tC“l 6[()]

7: sp,,l € [N(B)]

8: P e Rwxd

9: end members

10:

11: procedure SCALE(s € R?, ¢ € R)
12: if s € span(P) then

13: pass

14: else

15: P+ (P,(I—-P)s/|(I—-P)s|2), w <+ w+1

16: for B;,1 € [N(B)] and C;,1 € [N(C)] do

17: sp, < (sB,,0) and te, < (t¢,,0)

18: end for

19: Find the box By (p)41 of length /4 containing s and let SBy (py4. DE its center
20: for o <p e N"and B;,l € [N(B)] do

21: A(a,0)(B1) < Aa(B1)

22: end for

23: for 0<peN" 0<i<pand(C,l e [N(C) do
24 Cia.(C) « SPEhi(0) - Co (@)

25: end for

26: end if

27: end procedure
28: end data structure

where 2, denotes the “lifted” point in the new subspace. And A”e (B) = 0 for all 4 > 0, since

(i)
(zf — xB) k+1 = 0. Similarly, for each target box C,

(||ﬂ”1 (l% _y/c>
cpen () =—L L AP (B)H oy v | 2BV
(B,i) () 6'7/‘ ;O[ZQ)]ZO (J) (a+B,i+7) ﬁ
(-1 IIﬂHl (:Eg—yc)
= An(B)H, - h; (0

LSS @ () o

0 s

7!

where the second step follows from AfZ", (B) = Ao (B)-1;—¢. Therefore, by enumerating all boxes
B, C and indices a, 5 < p, we can correctly compute A?zwo)(B) and C7g% (C). Thus, we complete
the proof of the correctness of Algorithm 11. O

39

	Introduction
	Main Result

	Related Work
	Technical Overview
	Offline FGT Algorithm
	Online Static KDE Data Structure (Query-Only)
	Dynamization
	Generalization to Fast-Decaying Kernels
	Handling Points From Low-Dimensional Static Spaces
	Handling Points From Low-Dimensional Dynamic Spaces

	Conclusion and Future Directions
	Preliminaries
	FMM Background
	Fast Gaussian Transform

	Our Result
	Properties of Kernel Function
	Dynamic FGT

	Algorithms
	Analysis
	Error Estimation
	Low Dimension Subspace FGT
	Projection Lemma
	Proof of Main Result in Low-Dimensional Case
	Dynamic Low-Rank FGT with Increasing Rank

